Papers
Topics
Authors
Recent
2000 character limit reached

Black Box Explanation by Learning Image Exemplars in the Latent Feature Space

Published 27 Jan 2020 in cs.CV and cs.LG | (2002.03746v1)

Abstract: We present an approach to explain the decisions of black box models for image classification. While using the black box to label images, our explanation method exploits the latent feature space learned through an adversarial autoencoder. The proposed method first generates exemplar images in the latent feature space and learns a decision tree classifier. Then, it selects and decodes exemplars respecting local decision rules. Finally, it visualizes them in a manner that shows to the user how the exemplars can be modified to either stay within their class, or to become counter-factuals by "morphing" into another class. Since we focus on black box decision systems for image classification, the explanation obtained from the exemplars also provides a saliency map highlighting the areas of the image that contribute to its classification, and areas of the image that push it into another class. We present the results of an experimental evaluation on three datasets and two black box models. Besides providing the most useful and interpretable explanations, we show that the proposed method outperforms existing explainers in terms of fidelity, relevance, coherence, and stability.

Citations (63)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.