Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multi-Task Learning by a Top-Down Control Network (2002.03335v3)

Published 9 Feb 2020 in cs.LG, cs.CV, and stat.ML

Abstract: As the range of tasks performed by a general vision system expands, executing multiple tasks accurately and efficiently in a single network has become an important and still open problem. Recent computer vision approaches address this problem by branching networks, or by a channel-wise modulation of the network feature-maps with task specific vectors. We present a novel architecture that uses a dedicated top-down control network to modify the activation of all the units in the main recognition network in a manner that depends on the selected task, image content, and spatial location. We show the effectiveness of our scheme by achieving significantly better results than alternative state-of-the-art approaches on four datasets. We further demonstrate our advantages in terms of task selectivity, scaling the number of tasks and interpretability.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.