Papers
Topics
Authors
Recent
2000 character limit reached

Multi-Modality Cascaded Fusion Technology for Autonomous Driving

Published 8 Feb 2020 in cs.CV | (2002.03138v1)

Abstract: Multi-modality fusion is the guarantee of the stability of autonomous driving systems. In this paper, we propose a general multi-modality cascaded fusion framework, exploiting the advantages of decision-level and feature-level fusion, utilizing target position, size, velocity, appearance and confidence to achieve accurate fusion results. In the fusion process, dynamic coordinate alignment(DCA) is conducted to reduce the error between sensors from different modalities. In addition, the calculation of affinity matrix is the core module of sensor fusion, we propose an affinity loss that improves the performance of deep affinity network(DAN). Last, the proposed step-by-step cascaded fusion framework is more interpretable and flexible compared to the end-toend fusion methods. Extensive experiments on Nuscenes [2] dataset show that our approach achieves the state-of-theart performance.dataset show that our approach achieves the state-of-the-art performance.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.