Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

FiniteNet: A Fully Convolutional LSTM Network Architecture for Time-Dependent Partial Differential Equations (2002.03014v1)

Published 7 Feb 2020 in cs.LG, cs.NA, math.NA, physics.comp-ph, physics.flu-dyn, and stat.ML

Abstract: In this work, we present a machine learning approach for reducing the error when numerically solving time-dependent partial differential equations (PDE). We use a fully convolutional LSTM network to exploit the spatiotemporal dynamics of PDEs. The neural network serves to enhance finite-difference and finite-volume methods (FDM/FVM) that are commonly used to solve PDEs, allowing us to maintain guarantees on the order of convergence of our method. We train the network on simulation data, and show that our network can reduce error by a factor of 2 to 3 compared to the baseline algorithms. We demonstrate our method on three PDEs that each feature qualitatively different dynamics. We look at the linear advection equation, which propagates its initial conditions at a constant speed, the inviscid Burgers' equation, which develops shockwaves, and the Kuramoto-Sivashinsky (KS) equation, which is chaotic.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.