Papers
Topics
Authors
Recent
2000 character limit reached

Temporal Probability Calibration

Published 7 Feb 2020 in cs.LG and stat.ML | (2002.02644v2)

Abstract: In many applications, accurate class probability estimates are required, but many types of models produce poor quality probability estimates despite achieving acceptable classification accuracy. Even though probability calibration has been a hot topic of research in recent times, the majority of this has investigated non-sequential data. In this paper, we consider calibrating models that produce class probability estimates from sequences of data, focusing on the case where predictions are obtained from incomplete sequences. We show that traditional calibration techniques are not sufficiently expressive for this task, and propose methods that adapt calibration schemes depending on the length of an input sequence. Experimental evaluation shows that the proposed methods are often substantially more effective at calibrating probability estimates from modern sequential architectures for incomplete sequences across a range of application domains.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.