Papers
Topics
Authors
Recent
Search
2000 character limit reached

Poisson Kernel Avoiding Self-Smoothing in Graph Convolutional Networks

Published 7 Feb 2020 in cs.CV and cs.LG | (2002.02589v2)

Abstract: Graph convolutional network (GCN) is now an effective tool to deal with non-Euclidean data, such as social networks in social behavior analysis, molecular structure analysis in the field of chemistry, and skeleton-based action recognition. Graph convolutional kernel is one of the most significant factors in GCN to extract nodes' feature, and some improvements of it have reached promising performance theoretically and experimentally. However, there is limited research about how exactly different data types and graph structures influence the performance of these kernels. Most existing methods used an adaptive convolutional kernel to deal with a given graph structure, which still not reveals the internal reasons. In this paper, we started from theoretical analysis of the spectral graph and studied the properties of existing graph convolutional kernels. While taking some designed datasets with specific parameters into consideration, we revealed the self-smoothing phenomenon of convolutional kernels. After that, we proposed the Poisson kernel that can avoid self-smoothing without training any adaptive kernel. Experimental results demonstrate that our Poisson kernel not only works well on the benchmark dataset where state-of-the-art methods work fine, but also is evidently superior to them in synthetic datasets.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.