Isoperimetric estimates in low dimensional Riemannian products (2002.02510v1)
Abstract: Let $(Tk,h_k)=(S_{r_1}1\times S_{r_2}1 \times ... \times S_{r_k}1, dt_12+dt_22+...+dt_k2)$ be flat tori, $r_k\geq ...\geq r_2\geq r_1>0$ and $(\mathbb Rn,g_E)$ the Euclidean space with the flat metric. We compute the isoperimetric profile of $(T2\times \mathbb Rn, h_2+g_E)$, $2\leq n\leq 5$, for small and big values of the volume. These computations give explicit lower bounds for the isoperimetric profile of $T2\times\mathbb Rn$. We also note that similar estimates for $(Tk\times \mathbb Rn, h_k+g_E)$, $2\leq k\leq5$, $2\leq n\leq 7-k$, may be computed, provided estimates for $(T{k-1}\times \mathbb R{n+1}, h_{k-1}+g_E)$ exist. We compute this explicitly for $k=3$. We use symmetrization techniques for product manifolds, based on work of A. Ros and F. Morgan.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.