Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 62 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 423 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Iterative algorithm with structured diagonal Hessian approximation for solving nonlinear least squares problems (2002.01871v1)

Published 5 Feb 2020 in math.OC

Abstract: Nonlinear least-squares problems are a special class of unconstrained optimization problems in which their gradient and Hessian have special structures. In this paper, we exploit these structures and proposed a matrix-free algorithm with a diagonal Hessian approximation for solving nonlinear least-squares problems. We devise appropriate safeguarding strategies to ensure the Hessian matrix is positive definite throughout the iteration process. The proposed algorithm generates descent direction and is globally convergent. Preliminary numerical experiments show that the proposed method is competitive with a recently developed similar method.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.