Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Entropy Minimization vs. Diversity Maximization for Domain Adaptation (2002.01690v1)

Published 5 Feb 2020 in cs.LG, cs.CV, and stat.ML

Abstract: Entropy minimization has been widely used in unsupervised domain adaptation (UDA). However, existing works reveal that entropy minimization only may result into collapsed trivial solutions. In this paper, we propose to avoid trivial solutions by further introducing diversity maximization. In order to achieve the possible minimum target risk for UDA, we show that diversity maximization should be elaborately balanced with entropy minimization, the degree of which can be finely controlled with the use of deep embedded validation in an unsupervised manner. The proposed minimal-entropy diversity maximization (MEDM) can be directly implemented by stochastic gradient descent without use of adversarial learning. Empirical evidence demonstrates that MEDM outperforms the state-of-the-art methods on four popular domain adaptation datasets.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.