Papers
Topics
Authors
Recent
2000 character limit reached

Identification of Indian Languages using Ghost-VLAD pooling (2002.01664v1)

Published 5 Feb 2020 in cs.CL, cs.LG, and eess.AS

Abstract: In this work, we propose a new pooling strategy for language identification by considering Indian languages. The idea is to obtain utterance level features for any variable length audio for robust language recognition. We use the GhostVLAD approach to generate an utterance level feature vector for any variable length input audio by aggregating the local frame level features across time. The generated feature vector is shown to have very good language discriminative features and helps in getting state of the art results for language identification task. We conduct our experiments on 635Hrs of audio data for 7 Indian languages. Our method outperforms the previous state of the art x-vector [11] method by an absolute improvement of 1.88% in F1-score and achieves 98.43% F1-score on the held-out test data. We compare our system with various pooling approaches and show that GhostVLAD is the best pooling approach for this task. We also provide visualization of the utterance level embeddings generated using Ghost-VLAD pooling and show that this method creates embeddings which has very good language discriminative features.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.