Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Broadband Channel Estimation for Intelligent Reflecting Surface Aided mmWave Massive MIMO Systems (2002.01629v3)

Published 5 Feb 2020 in cs.IT, eess.SP, and math.IT

Abstract: This paper investigates the broadband channel estimation (CE) for intelligent reflecting surface (IRS)-aided millimeter-wave (mmWave) massive MIMO systems. The CE for such systems is a challenging task due to the large dimension of both the active massive MIMO at the base station (BS) and passive IRS. To address this problem, this paper proposes a compressive sensing (CS)-based CE solution for IRS-aided mmWave massive MIMO systems, whereby the angular channel sparsity of large-scale array at mmWave is exploited for improved CE with reduced pilot overhead. Specifically, we first propose a downlink pilot transmission framework. By designing the pilot signals based on the prior knowledge that the line-of-sight dominated BS-to-IRS channel is known, the high-dimensional channels for BS-to-user and IRS-to-user can be jointly estimated based on CS theory. Moreover, to efficiently estimate broadband channels, a distributed orthogonal matching pursuit algorithm is exploited, where the common sparsity shared by the channels at different subcarriers is utilized. Additionally, the redundant dictionary to combat the power leakage is also designed for the enhanced CE performance. Simulation results demonstrate the effectiveness of the proposed scheme.

Citations (85)

Summary

We haven't generated a summary for this paper yet.