Papers
Topics
Authors
Recent
2000 character limit reached

Optimal Confidence Regions for the Multinomial Parameter

Published 3 Feb 2020 in stat.ML, cs.IT, cs.LG, math.IT, math.ST, and stat.TH | (2002.01044v2)

Abstract: Construction of tight confidence regions and intervals is central to statistical inference and decision making. This paper develops new theory showing minimum average volume confidence regions for categorical data. More precisely, consider an empirical distribution $\widehat{\boldsymbol{p}}$ generated from $n$ iid realizations of a random variable that takes one of $k$ possible values according to an unknown distribution $\boldsymbol{p}$. This is analogous to a single draw from a multinomial distribution. A confidence region is a subset of the probability simplex that depends on $\widehat{\boldsymbol{p}}$ and contains the unknown $\boldsymbol{p}$ with a specified confidence. This paper shows how one can construct minimum average volume confidence regions, answering a long standing question. We also show the optimality of the regions directly translates to optimal confidence intervals of linear functionals such as the mean, implying sample complexity and regret improvements for adaptive machine learning algorithms.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.