2000 character limit reached
A sign pattern with non-zero elements on the diagonal whose minimal rank realizations are not diagonalizable over the complex numbers (2002.00912v1)
Published 3 Feb 2020 in math.CO
Abstract: The rank of the $9\times 9$ matrix $$ \left( \begin{array}{cccc|c|cccc} 1&1&0&0&1&0&0&0&0\ 1&1&0&0&0&0&0&0&0\ 0&0&1&1&1&0&0&0&0\ 0&0&1&1&0&0&0&0&0\\hline 0&0&0&0&1&0&1&0&1\\hline 0&0&0&0&0&1&1&0&0\ 0&0&0&0&0&1&1&0&0\ 0&0&0&0&0&0&0&1&1\ 0&0&0&0&0&0&0&1&1 \end{array} \right) $$ is $6$. If we replace the ones by arbitrary non-zero numbers, we get a matrix $B$ with $\operatorname{rank} B\geqslant6$, and if $\operatorname{rank} B=6$, the $6\times 6$ principal minors of $B$ vanish.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.