Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

L6DNet: Light 6 DoF Network for Robust and Precise Object Pose Estimation with Small Datasets (2002.00911v6)

Published 3 Feb 2020 in cs.CV

Abstract: Estimating the 3D pose of an object is a challenging task that can be considered within augmented reality or robotic applications. In this paper, we propose a novel approach to perform 6 DoF object pose estimation from a single RGB-D image. We adopt a hybrid pipeline in two stages: data-driven and geometric respectively. The data-driven step consists of a classification CNN to estimate the object 2D location in the image from local patches, followed by a regression CNN trained to predict the 3D location of a set of keypoints in the camera coordinate system. To extract the pose information, the geometric step consists in aligning the 3D points in the camera coordinate system with the corresponding 3D points in world coordinate system by minimizing a registration error, thus computing the pose. Our experiments on the standard dataset LineMod show that our approach is more robust and accurate than state-of-the-art methods. The approach is also validated to achieve a 6 DoF positioning task by visual servoing.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Mathieu Gonzalez (4 papers)
  2. Amine Kacete (5 papers)
  3. Albert Murienne (2 papers)
  4. Eric Marchand (13 papers)
Citations (8)