Papers
Topics
Authors
Recent
2000 character limit reached

Structural-Aware Sentence Similarity with Recursive Optimal Transport

Published 28 Jan 2020 in cs.CL, cs.LG, and stat.ML | (2002.00745v1)

Abstract: Measuring sentence similarity is a classic topic in natural language processing. Light-weighted similarities are still of particular practical significance even when deep learning models have succeeded in many other tasks. Some light-weighted similarities with more theoretical insights have been demonstrated to be even stronger than supervised deep learning approaches. However, the successful light-weighted models such as Word Mover's Distance [Kusner et al., 2015] or Smooth Inverse Frequency [Arora et al., 2017] failed to detect the difference from the structure of sentences, i.e. order of words. To address this issue, we present Recursive Optimal Transport (ROT) framework to incorporate the structural information with the classic OT. Moreover, we further develop Recursive Optimal Similarity (ROTS) for sentences with the valuable semantic insights from the connections between cosine similarity of weighted average of word vectors and optimal transport. ROTS is structural-aware and with low time complexity compared to optimal transport. Our experiments over 20 sentence textural similarity (STS) datasets show the clear advantage of ROTS over all weakly supervised approaches. Detailed ablation study demonstrate the effectiveness of ROT and the semantic insights.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.