Papers
Topics
Authors
Recent
2000 character limit reached

Adaptive strategy in differential evolution via explicit exploitation and exploration controls

Published 3 Feb 2020 in cs.NE | (2002.00612v2)

Abstract: Existing multi-strategy adaptive differential evolution (DE) commonly involves trials of multiple strategies and then rewards better-performing ones with more resources. However, the trials of an exploitative or explorative strategy may result in over-exploitation or over-exploration. To improve the performance, this paper proposes a new strategy adaptation method, named explicit adaptation scheme (Ea scheme), which separates multiple strategies and employs them on-demand. It is done by dividing the evolution process into several Selective-candidate with Similarity Selection (SCSS) generations and adaptive generations. In the SCSS generations, the exploitation and exploration needs are learnt by utilizing a balanced strategy. To meet these needs, in adaptive generations, two other strategies, exploitative or explorative is adaptively used. Experimental studies on benchmark functions demonstrate the effectiveness of Ea scheme when compared with its variants and other adaptation methods. Furthermore, performance comparisons with state-of-the-art evolutionary algorithms and swarm intelligence-based algorithms show that EaDE is very competitive.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.