Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Dialogue-Based Simulation For Cultural Awareness Training (2002.00223v2)

Published 1 Feb 2020 in cs.CY and cs.AI

Abstract: Existing simulations designed for cultural and interpersonal skill training rely on pre-defined responses with a menu option selection interface. Using a multiple-choice interface and restricting trainees' responses may limit the trainees' ability to apply the lessons in real life situations. This systems also uses a simplistic evaluation model, where trainees' selected options are marked as either correct or incorrect. This model may not capture sufficient information that could drive an adaptive feedback mechanism to improve trainees' cultural awareness. This paper describes the design of a dialogue-based simulation for cultural awareness training. The simulation, built around a disaster management scenario involving a joint coalition between the US and the Chinese armies. Trainees were able to engage in realistic dialogue with the Chinese agent. Their responses, at different points, get evaluated by different multi-label classification models. Based on training on our dataset, the models score the trainees' responses for cultural awareness in the Chinese culture. Trainees also get feedback that informs the cultural appropriateness of their responses. The result of this work showed the following; i) A feature-based evaluation model improves the design, modeling and computation of dialogue-based training simulation systems; ii) Output from current automatic speech recognition (ASR) systems gave comparable end results compared with the output from manual transcription; iii) A multi-label classification model trained as a cultural expert gave results which were comparable with scores assigned by human annotators.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.