Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boosting Algorithms for Estimating Optimal Individualized Treatment Rules (2002.00079v1)

Published 31 Jan 2020 in stat.ML, cs.LG, and stat.AP

Abstract: We present nonparametric algorithms for estimating optimal individualized treatment rules. The proposed algorithms are based on the XGBoost algorithm, which is known as one of the most powerful algorithms in the machine learning literature. Our main idea is to model the conditional mean of clinical outcome or the decision rule via additive regression trees, and use the boosting technique to estimate each single tree iteratively. Our approaches overcome the challenge of correct model specification, which is required in current parametric methods. The major contribution of our proposed algorithms is providing efficient and accurate estimation of the highly nonlinear and complex optimal individualized treatment rules that often arise in practice. Finally, we illustrate the superior performance of our algorithms by extensive simulation studies and conclude with an application to the real data from a diabetes Phase III trial.

Citations (4)

Summary

We haven't generated a summary for this paper yet.