Papers
Topics
Authors
Recent
Search
2000 character limit reached

Effect of spatial average on the spatiotemporal pattern formation of reaction-diffusion systems

Published 31 Jan 2020 in math.AP | (2001.11960v1)

Abstract: Some quantities in the reaction-diffusion models from cellular biology or ecology depend on the spatial average of density functions instead of local density functions. We show that such nonlocal spatial average can induce instability of constant steady state, which is different from classical Turing instability. For a general scalar equation with spatial average, the occurrence of the steady state bifurcation is rigorously proved, and the formula to determine the bifurcation direction and the stability of the bifurcating steady state is given. For the two-species model, spatially non-homogeneous time-periodic orbits could arise due to spatially non-homogeneous Hopf bifurcation from the constant equilibrium. Examples from a nonlocal cooperative Lotka-Volterra model and a nonlocal Rosenzweig-MacArthur predator-prey model are used to demonstrate the bifurcation of spatially non-homogeneous patterns.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.