Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Search for Better Students to Learn Distilled Knowledge (2001.11612v1)

Published 30 Jan 2020 in cs.CV and cs.LG

Abstract: Knowledge Distillation, as a model compression technique, has received great attention. The knowledge of a well-performed teacher is distilled to a student with a small architecture. The architecture of the small student is often chosen to be similar to their teacher's, with fewer layers or fewer channels, or both. However, even with the same number of FLOPs or parameters, the students with different architecture can achieve different generalization ability. The configuration of a student architecture requires intensive network architecture engineering. In this work, instead of designing a good student architecture manually, we propose to search for the optimal student automatically. Based on L1-norm optimization, a subgraph from the teacher network topology graph is selected as a student, the goal of which is to minimize the KL-divergence between student's and teacher's outputs. We verify the proposal on CIFAR10 and CIFAR100 datasets. The empirical experiments show that the learned student architecture achieves better performance than ones specified manually. We also visualize and understand the architecture of the found student.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube