Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sound field reconstruction in rooms: inpainting meets super-resolution (2001.11263v2)

Published 30 Jan 2020 in cs.SD, cs.LG, and eess.AS

Abstract: In this paper, a deep-learning-based method for sound field reconstruction is proposed. It is shown the possibility to reconstruct the magnitude of the sound pressure in the frequency band 30-300 Hz for an entire room by using a very low number of irregularly distributed microphones arbitrarily arranged. Moreover, the approach is agnostic to the location of the measurements in the Euclidean space. In particular, the presented approach uses a limited number of arbitrary discrete measurements of the magnitude of the sound field pressure in order to extrapolate this field to a higher-resolution grid of discrete points in space with a low computational complexity. The method is based on a U-net-like neural network with partial convolutions trained solely on simulated data, which itself is constructed from numerical simulations of Green's function across thousands of common rectangular rooms. Although extensible to three dimensions and different room shapes, the method focuses on reconstructing a two-dimensional plane of a rectangular room from measurements of the three-dimensional sound field. Experiments using simulated data together with an experimental validation in a real listening room are shown. The results suggest a performance which may exceed conventional reconstruction techniques for a low number of microphones and computational requirements.

Citations (51)

Summary

We haven't generated a summary for this paper yet.