Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Adaptive Estimation and Statistical Inference for High-Dimensional Graph-Based Linear Models (2001.10679v1)

Published 29 Jan 2020 in math.ST, stat.ME, and stat.TH

Abstract: We consider adaptive estimation and statistical inference for high-dimensional graph-based linear models. In our model, the coordinates of regression coefficients correspond to an underlying undirected graph. Furthermore, the given graph governs the piecewise polynomial structure of the regression vector. In the adaptive estimation part, we apply graph-based regularization techniques and propose a family of locally adaptive estimators called the Graph-Piecewise-Polynomial-Lasso. We further study a one-step update of the Graph-Piecewise-Polynomial-Lasso for the problem of statistical inference. We develop the corresponding theory, which includes the fixed design and the sub-Gaussian random design. Finally, we illustrate the superior performance of our approaches by extensive simulation studies and conclude with an application to an Arabidopsis thaliana microarray dataset.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.