Papers
Topics
Authors
Recent
2000 character limit reached

Landmark2Vec: An Unsupervised Neural Network-Based Landmark Positioning Method

Published 28 Jan 2020 in cs.LG, eess.SP, and stat.ML | (2001.10568v1)

Abstract: A Neural Network-based method for unsupervised landmarks map estimation from measurements taken from landmarks is introduced. The measurements needed for training the network are the signals observed/received from landmarks by an agent. The definition of landmarks, agent, and the measurements taken by agent from landmarks is rather broad here: landmarks can be visual objects, e.g., poles along a road, with measurements being the size of landmark in a visual sensor mounted on a vehicle (agent), or they can be radio transmitters, e.g., WiFi access points inside a building, with measurements being the Received Signal Strength (RSS) heard from them by a mobile device carried by a person (agent). The goal of the map estimation is then to find the positions of landmarks up to a scale, rotation, and shift (i.e., the topological map of the landmarks). Assuming that there are $L$ landmarks, the measurements will be $L \times 1$ vectors collected over the area. A shallow network then will be trained to learn the map without any ground truth information.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.