Papers
Topics
Authors
Recent
2000 character limit reached

OPFython: A Python-Inspired Optimum-Path Forest Classifier

Published 28 Jan 2020 in cs.LG, cs.CV, and stat.ML | (2001.10420v3)

Abstract: Machine learning techniques have been paramount throughout the last years, being applied in a wide range of tasks, such as classification, object recognition, person identification, and image segmentation. Nevertheless, conventional classification algorithms, e.g., Logistic Regression, Decision Trees, and Bayesian classifiers, might lack complexity and diversity, not suitable when dealing with real-world data. A recent graph-inspired classifier, known as the Optimum-Path Forest, has proven to be a state-of-the-art technique, comparable to Support Vector Machines and even surpassing it in some tasks. This paper proposes a Python-based Optimum-Path Forest framework, denoted as OPFython, where all of its functions and classes are based upon the original C language implementation. Additionally, as OPFython is a Python-based library, it provides a more friendly environment and a faster prototyping workspace than the C language.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.