Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Margin Maximization as Lossless Maximal Compression (2001.10318v1)

Published 28 Jan 2020 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: The ultimate goal of a supervised learning algorithm is to produce models constructed on the training data that can generalize well to new examples. In classification, functional margin maximization -- correctly classifying as many training examples as possible with maximal confidence --has been known to construct models with good generalization guarantees. This work gives an information-theoretic interpretation of a margin maximizing model on a noiseless training dataset as one that achieves lossless maximal compression of said dataset -- i.e. extracts from the features all the useful information for predicting the label and no more. The connection offers new insights on generalization in supervised machine learning, showing margin maximization as a special case (that of classification) of a more general principle and explains the success and potential limitations of popular learning algorithms like gradient boosting. We support our observations with theoretical arguments and empirical evidence and identify interesting directions for future work.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.