2000 character limit reached
Strong Polynomiality of the Value Iteration Algorithm for Computing Nearly Optimal Policies for Discounted Dynamic Programming (2001.10174v1)
Published 28 Jan 2020 in math.OC
Abstract: This note provides upper bounds on the number of operations required to compute by value iterations a nearly optimal policy for an infinite-horizon discounted Markov decision process with a finite number of states and actions. For a given discount factor, magnitude of the reward function, and desired closeness to optimality, these upper bounds are strongly polynomial in the number of state-action pairs, and one of the provided upper bounds has the property that it is a non-decreasing function of the value of the discount factor.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.