Papers
Topics
Authors
Recent
Search
2000 character limit reached

Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps

Published 27 Jan 2020 in math.DS | (2001.10068v2)

Abstract: For a class of piecewise hyperbolic maps in two dimensions, we propose a combinatorial definition of topological entropy by counting the maximal, open, connected components of the phase space on which iterates of the map are smooth. We prove that this quantity dominates the measure theoretic entropies of all invariant probability measures of the system, and then construct an invariant measure whose entropy equals the proposed topological entropy. We prove that our measure is the unique measure of maximal entropy, that it is ergodic, gives positive measure to every open set, and has exponential decay of correlations against H\"older continuous functions. As a consequence, we also prove a lower bound on the rate of growth of periodic orbits. The main tool used in the paper is the construction of anisotropic Banach spaces of distributions on which the relevant weighted transfer operator has a spectral gap. We then construct our measure of maximal entropy by taking a product of left and right maximal eigenvectors of this operator.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.