Papers
Topics
Authors
Recent
2000 character limit reached

Boundary treatment of high order Runge-Kutta methods for hyperbolic conservation laws

Published 24 Jan 2020 in math.NA and cs.NA | (2001.09854v2)

Abstract: In \cite{ZH2019}, we developed a boundary treatment method for implicit-explicit (IMEX) Runge-Kutta (RK) methods for solving hyperbolic systems with source terms. Since IMEX RK methods include explicit ones as special cases, this boundary treatment method naturally applies to explicit methods as well. In this paper, we examine this boundary treatment method for the case of explicit RK schemes of arbitrary order applied to hyperbolic conservation laws. We show that the method not only preserves the accuracy of explicit RK schemes but also possesses good stability. This compares favourably to the inverse Lax-Wendroff method in \cite{TS2010,TWSN2012} where analysis and numerical experiments have previously verified the presence of order reduction \cite{TS2010,TWSN2012}. In addition, we demonstrate that our method performs well for strong-stability-preserving (SSP) RK schemes involving negative coefficients and downwind spatial discretizations. It is numerically shown that when boundary conditions are present and the proposed boundary treatment is used, that SSP RK schemes with negative coefficients still allow for larger time steps than schemes with all non-negative coefficients. In this regard, our boundary treatment method is an effective supplement to SSP RK schemes with/without negative coefficients for initial-boundary value problems for hyperbolic conservation laws.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.