Papers
Topics
Authors
Recent
2000 character limit reached

Curriculum Audiovisual Learning

Published 26 Jan 2020 in cs.CV | (2001.09414v1)

Abstract: Associating sound and its producer in complex audiovisual scene is a challenging task, especially when we are lack of annotated training data. In this paper, we present a flexible audiovisual model that introduces a soft-clustering module as the audio and visual content detector, and regards the pervasive property of audiovisual concurrency as the latent supervision for inferring the correlation among detected contents. To ease the difficulty of audiovisual learning, we propose a novel curriculum learning strategy that trains the model from simple to complex scene. We show that such ordered learning procedure rewards the model the merits of easy training and fast convergence. Meanwhile, our audiovisual model can also provide effective unimodal representation and cross-modal alignment performance. We further deploy the well-trained model into practical audiovisual sound localization and separation task. We show that our localization model significantly outperforms existing methods, based on which we show comparable performance in sound separation without referring external visual supervision. Our video demo can be found at https://youtu.be/kuClfGG0cFU.

Citations (32)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.