Papers
Topics
Authors
Recent
2000 character limit reached

Regret of Age-of-Information Bandits

Published 25 Jan 2020 in eess.SY and cs.SY | (2001.09317v2)

Abstract: We consider a system with a single source that measures/tracks a time-varying quantity and periodically attempts to report these measurements to a monitoring station. Each update from the source has to be scheduled on one of K available communication channels. The probability of success of each attempted communication is a function of the channel used. This function is unknown to the scheduler. The metric of interest is the Age-of-Information (AoI), formally defined as the time elapsed since the destination received the recent most update from the source. We model our scheduling problem as a variant of the multi-arm bandit problem with communication channels as arms. We characterize a lower bound on the AoI regret achievable by any policy and characterize the performance of UCB, Thompson Sampling, and their variants. Our analytical results show that UCB and Thompson sampling are order-optimal for AoI bandits. In addition, we propose novel policies which, unlike UCB and Thompson Sampling, use the current AoI to make scheduling decisions. Via simulations, we show the proposed AoI-aware policies outperform existing AoI-agnostic policies.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.