Papers
Topics
Authors
Recent
2000 character limit reached

Data Techniques For Online End-to-end Speech Recognition

Published 24 Jan 2020 in eess.AS, cs.CL, and cs.LG | (2001.09221v2)

Abstract: Practitioners often need to build ASR systems for new use cases in a short amount of time, given limited in-domain data. While recently developed end-to-end methods largely simplify the modeling pipelines, they still suffer from the data sparsity issue. In this work, we explore a few simple-to-implement techniques for building online ASR systems in an end-to-end fashion, with a small amount of transcribed data in the target domain. These techniques include data augmentation in the target domain, domain adaptation using models previously trained on a large source domain, and knowledge distillation on non-transcribed target domain data, using an adapted bi-directional model as the teacher; they are applicable in real scenarios with different types of resources. Our experiments demonstrate that each technique is independently useful in the improvement of the online ASR performance in the target domain.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.