Hydrodynamic generators in relativistic kinetic theory (2001.09125v2)
Abstract: We resum the non-equilibrium gradient corrections to a single-particle distribution function evolved by the Boltzmann equation in the relaxation time approximation (RTA). We first study a system undergoing Bjorken expansion and show that, for a constant relaxation time, the exact solution of the RTA Boltzmann equation at late times (i.e. after the decay of non-hydrodynamic modes) generates the Borel resummed Chapman-Enskog series. Extending this correspondence to systems without Bjorken symmetry, we construct a (3+1)-dimensional hydrodynamic generator for RTA kinetic theory, which is an integral representation of the Chapman-Enskog series in the limit of vanishing non-hydrodynamic modes. Relaxing this limit we find at earlier times a set of non-hydrodynamic modes coupled to the Chapman-Enskog expansion. Including the dynamics of these non-hydrodynamic modes is shown to control the emergence of hydrodynamics as an effective field theory description of non-equilibrium fluids, which works well even for far-off-equilibrium situations where the Knudsen number is initially large.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.