Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Identifying time dependence in network growth (2001.09118v3)

Published 24 Jan 2020 in physics.soc-ph

Abstract: Identifying power-law scaling in real networks - indicative of preferential attachment - has proved controversial. Critics argue that measuring the temporal evolution of a network directly is better than measuring the degree distribution when looking for preferential attachment. However, many of the established methods do not account for any potential time-dependence in the attachment kernels of growing networks, or methods assume that node degree is the key observable determining network evolution. In this paper, we argue that these assumptions may lead to misleading conclusions about the evolution of growing networks. We illustrate this by introducing a simple adaptation of the Barab{\'a}si-Albert model, the "k2 model", where new nodes attach to nodes in the existing network in proportion to the number of nodes one or two steps from the target node. The k2 model results in time dependent degree distributions and attachment kernels, despite initially appearing to grow as linear preferential attachment, and without the need to include explicit time dependence in key network parameters (such as the average out-degree). We show that similar effects are seen in several real world networks where constant network growth rules do not describe their evolution. This implies that measurements of specific degree distributions in real networks are also likely to change over time.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.