Papers
Topics
Authors
Recent
Search
2000 character limit reached

Numerical Approximation of the Fractional Laplacian on $\mathbb R$ Using Orthogonal Families

Published 23 Jan 2020 in math.NA and cs.NA | (2001.08825v1)

Abstract: In this paper, using well-known complex variable techniques, we compute explicitly, in terms of the ${}_2F_1$ Gaussian hypergeometric function, the one-dimensional fractional Laplacian of the Higgins functions, the Christov functions, and their sine-like and cosine-like versions. After discussing the numerical difficulties in the implementation of the proposed formulas, we develop a method using variable precision arithmetic that gives accurate results.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.