Doubling Constructions: the complete L-function for coverings of the symplectic group (2001.08186v3)
Abstract: We develop the local theory of the generalized doubling method for the $m$-fold central extension $Sp_{2n}{(m)}$ of Matsumoto of the symplectic group. We define local $\gamma$-, $L$- and $\epsilon$-factors for pairs of genuine representations of $Sp_{2n}{(m)}\times\widetilde{GL}_k$ and prove their fundamental properties, in the sense of Shahidi. Here $\widetilde{GL}k$ is the central extension of $GL_k$ arising in the context of the Langlands--Shahidi method for covering groups of $Sp{2n}\times GL_k$. We then construct the complete $L$-function for cuspidal representations and prove its global functional equation. Possible applications include classification results and a Shimura type lift of representations from covering groups to general linear groups (a global lift is sketched here for $m=2$).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.