Fixed point properties for semigroups of nonlinear mappings on unbounded sets (2001.08158v1)
Abstract: A well-known result of W. Ray asserts that if $C$ is an unbounded convex subset of a Hilbert space, then there is a nonexpansive mapping $T$: $C\to C$ that has no fixed point. In this paper we establish some common fixed point properties for a semitopological semigroup $S$ of nonexpansive mappings acting on a closed convex subset $C$ of a Hilbert space, assuming that there is a point $c\in C$ with a bounded orbit and assuming that certain subspace of $C_b(S)$ has a left invariant mean. Left invariant mean (or amenability) is an important notion in harmonic analysis of semigroups and groups introduced by von Neumann in 1929 \cite{Neu} and formalized by Day in 1957 \cite{Day}. In our investigation we use the notion of common attractive points introduced recently by S. Atsushiba and W. Takahashi.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.