Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The Echo Index and multistability in input-driven recurrent neural networks (2001.07694v2)

Published 21 Jan 2020 in math.DS

Abstract: A recurrent neural network (RNN) possesses the echo state property (ESP) if, for a given input sequence, it ``forgets'' any internal states of the driven (nonautonomous) system and asymptotically follows a unique, possibly complex trajectory. The lack of ESP is conventionally understood as a lack of reliable behaviour in RNNs. Here, we show that RNNs can reliably perform computations under a more general principle that accounts only for their local behaviour in phase space. To this end, we formulate a generalisation of the ESP and introduce an echo index to characterise the number of simultaneously stable responses of a driven RNN. We show that it is possible for the echo index to change with inputs, highlighting a potential source of computational errors in RNNs due to characteristics of the inputs driving the dynamics.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.