Papers
Topics
Authors
Recent
2000 character limit reached

Transparently Capturing Request Execution Path for Anomaly Detection

Published 20 Jan 2020 in cs.DC | (2001.07276v2)

Abstract: With the increasing scale and complexity of cloud systems and big data analytics platforms, it is becoming more and more challenging to understand and diagnose the processing of a service request in such distributed platforms. One way that helps to deal with this problem is to capture the complete end-to-end execution path of service requests among all involved components accurately. This paper presents REPTrace, a generic methodology for capturing such execution paths in a transparent fashion. We analyze a comprehensive list of execution scenarios, and propose principles and algorithms for generating the end-to-end request execution path for all the scenarios. Moreover, this paper presents an anomaly detection approach exploiting request execution paths to detect anomalies of the execution during request processing. The experiments on four popular distributed platforms with different workloads show that REPTrace can transparently capture the accurate request execution path with reasonable latency and negligible network overhead. Fault injection experiments show that execution anomalies are detected with high recall (96%).

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.