2000 character limit reached
Markov risk mappings and risk-sensitive optimal prediction (2001.06895v4)
Published 19 Jan 2020 in math.OC, math.PR, and q-fin.MF
Abstract: We formulate a probabilistic Markov property in discrete time under a dynamic risk framework with minimal assumptions. This is useful for recursive solutions to risk-sensitive versions of dynamic optimisation problems such as optimal prediction, where at each stage the recursion depends on the whole future. The property holds for standard measures of risk used in practice, and is formulated in several equivalent versions including a representation via acceptance sets, a strong version, and a dual representation.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.