Papers
Topics
Authors
Recent
2000 character limit reached

Understanding the Power of Persistence Pairing via Permutation Test

Published 16 Jan 2020 in cs.LG, cs.CG, and stat.ML | (2001.06058v1)

Abstract: Recently many efforts have been made to incorporate persistence diagrams, one of the major tools in topological data analysis (TDA), into machine learning pipelines. To better understand the power and limitation of persistence diagrams, we carry out a range of experiments on both graph data and shape data, aiming to decouple and inspect the effects of different factors involved. To this end, we also propose the so-called \emph{permutation test} for persistence diagrams to delineate critical values and pairings of critical values. For graph classification tasks, we note that while persistence pairing yields consistent improvement over various benchmark datasets, it appears that for various filtration functions tested, most discriminative power comes from critical values. For shape segmentation and classification, however, we note that persistence pairing shows significant power on most of the benchmark datasets, and improves over both summaries based on merely critical values, and those based on permutation tests. Our results help provide insights on when persistence diagram based summaries could be more suitable.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.