Papers
Topics
Authors
Recent
2000 character limit reached

Reward Shaping for Reinforcement Learning with Omega-Regular Objectives (2001.05977v1)

Published 16 Jan 2020 in cs.LO and cs.LG

Abstract: Recently, successful approaches have been made to exploit good-for-MDPs automata (B\"uchi automata with a restricted form of nondeterminism) for model free reinforcement learning, a class of automata that subsumes good for games automata and the most widespread class of limit deterministic automata. The foundation of using these B\"uchi automata is that the B\"uchi condition can, for good-for-MDP automata, be translated to reachability. The drawback of this translation is that the rewards are, on average, reaped very late, which requires long episodes during the learning process. We devise a new reward shaping approach that overcomes this issue. We show that the resulting model is equivalent to a discounted payoff objective with a biased discount that simplifies and improves on prior work in this direction.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.