Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Analog spacetimes from nonrelativistic Goldstone modes in spinor condensates (2001.05496v2)

Published 15 Jan 2020 in cond-mat.quant-gas and gr-qc

Abstract: It is well established that linear dispersive modes in a flowing quantum fluid behave as though they are coupled to an Einstein-Hilbert metric and exhibit a host of phenomena coming from quantum field theory in curved space, including Hawking radiation. We extend this analogy to any nonrelativistic Goldstone mode in a flowing spinor Bose-Einstein condensate. In addition to showing the linear dispersive result for all such modes, we show that the quadratically dispersive modes couple to a special nonrelativistic spacetime called a Newton-Cartan geometry. The kind of spacetime (Einstein-Hilbert or Newton-Cartan) is intimately linked to the mean-field phase of the condensate. To illustrate the general result, we further provide the specific theory in the context of a pseudo-spin-1/2 condensate where we can tune between relativistic and nonrelativistic geometries. We uncover the fate of Hawking radiation upon such a transition: it vanishes and remains absent in the Newton-Cartan geometry despite the fact that any fluid flow creates a horizon for certain wave numbers. Finally, we use the coupling to different spacetimes to compute and relate various energy and momentum currents in these analog systems. While this result is general, present day experiments can realize these different spacetimes including the magnon modes for spin-1 condensates such as ${87}$Rb, ${7}$Li, ${41}$K (Newton-Cartan), and ${23}$Na (Einstein-Hilbert).

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.