Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A BERT based Sentiment Analysis and Key Entity Detection Approach for Online Financial Texts (2001.05326v1)

Published 14 Jan 2020 in cs.CL

Abstract: The emergence and rapid progress of the Internet have brought ever-increasing impact on financial domain. How to rapidly and accurately mine the key information from the massive negative financial texts has become one of the key issues for investors and decision makers. Aiming at the issue, we propose a sentiment analysis and key entity detection approach based on BERT, which is applied in online financial text mining and public opinion analysis in social media. By using pre-train model, we first study sentiment analysis, and then we consider key entity detection as a sentence matching or Machine Reading Comprehension (MRC) task in different granularity. Among them, we mainly focus on negative sentimental information. We detect the specific entity by using our approach, which is different from traditional Named Entity Recognition (NER). In addition, we also use ensemble learning to improve the performance of proposed approach. Experimental results show that the performance of our approach is generally higher than SVM, LR, NBM, and BERT for two financial sentiment analysis and key entity detection datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Lingyun Zhao (2 papers)
  2. Lin Li (329 papers)
  3. Xinhao Zheng (3 papers)
Citations (61)