Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boosting Vehicle-to-cloud Communication by Machine Learning-enabled Context Prediction (1904.10186v2)

Published 23 Apr 2019 in cs.NI

Abstract: The exploitation of vehicles as mobile sensors acts as a catalyst for novel crowdsensing-based applications such as intelligent traffic control and distributed weather forecast. However, the massive increases in Machine-type Communication (MTC) highly stress the capacities of the network infrastructure. With the system-immanent limitation of resources in cellular networks and the resource competition between human cell users and MTC, more resource-efficient channel access methods are required in order to improve the coexistence of the different communicating entities. In this paper, we present a machine learning-enabled transmission scheme for client-side opportunistic data transmission. By considering the measured channel state as well as the predicted future channel behavior, delay-tolerant MTC is performed with respect to the anticipated resource-efficiency. The proposed mechanism is evaluated in comprehensive field evaluations in public Long Term Evolution (LTE) networks, where it is able to increase the mean data rate by 194% while simultaneously reducing the average power consumption by up to 54%.

Citations (35)

Summary

We haven't generated a summary for this paper yet.