Papers
Topics
Authors
Recent
Search
2000 character limit reached

Model-Driven Beamforming Neural Networks

Published 15 Jan 2020 in cs.IT, cs.LG, eess.SP, and math.IT | (2001.05277v1)

Abstract: Beamforming is evidently a core technology in recent generations of mobile communication networks. Nevertheless, an iterative process is typically required to optimize the parameters, making it ill-placed for real-time implementation due to high complexity and computational delay. Heuristic solutions such as zero-forcing (ZF) are simpler but at the expense of performance loss. Alternatively, deep learning (DL) is well understood to be a generalizing technique that can deliver promising results for a wide range of applications at much lower complexity if it is sufficiently trained. As a consequence, DL may present itself as an attractive solution to beamforming. To exploit DL, this article introduces general data- and model-driven beamforming neural networks (BNNs), presents various possible learning strategies, and also discusses complexity reduction for the DL-based BNNs. We also offer enhancement methods such as training-set augmentation and transfer learning in order to improve the generality of BNNs, accompanied by computer simulation results and testbed results showing the performance of such BNN solutions.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.