Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SMT + ILP (2001.05208v1)

Published 15 Jan 2020 in cs.AI and cs.LG

Abstract: Inductive logic programming (ILP) has been a deeply influential paradigm in AI, enjoying decades of research on its theory and implementations. As a natural descendent of the fields of logic programming and machine learning, it admits the incorporation of background knowledge, which can be very useful in domains where prior knowledge from experts is available and can lead to a more data-efficient learning regime. Be that as it may, the limitation to Horn clauses composed over Boolean variables is a very serious one. Many phenomena occurring in the real-world are best characterized using continuous entities, and more generally, mixtures of discrete and continuous entities. In this position paper, we motivate a reconsideration of inductive declarative programming by leveraging satisfiability modulo theory technology.

Summary

We haven't generated a summary for this paper yet.