Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
37 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
37 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
10 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Preferential attachment: a multi-attribute growth process generating scale-free networks of different topologies (2001.05167v1)

Published 15 Jan 2020 in physics.soc-ph and physics.data-an

Abstract: This paper expands the degree-based consideration of the preferential attachment growth process and applies five different connectivity criteria (node degree, clustering coefficient, betweenness centrality, closeness centrality, and eigenvector centrality) to define the development of new links in the networks. Based on statistical inference, the analysis shows that all the available control attributes are capable generating SF networks, that the proposed generalized preferential attachment growth process produces networks of statistically different topologies, under different control-attributes, and that the betweenness centrality is the control-attribute generating networks of better topology. Overall, this paper introduces a multi-dimensional conceptualization of preferential attachment, which can motivate further research and can provide new tools for the modeling and interpretation of real-world networks that currently cannot be fully explained by the degree-driven BA models.

Summary

We haven't generated a summary for this paper yet.