Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generic Decoding in the Sum-Rank Metric (2001.04812v4)

Published 14 Jan 2020 in cs.IT and math.IT

Abstract: We propose the first non-trivial generic decoding algorithm for codes in the sum-rank metric. The new method combines ideas of well-known generic decoders in the Hamming and rank metric. For the same code parameters and number of errors, the new generic decoder has a larger expected complexity than the known generic decoders for the Hamming metric and smaller than the known rank-metric decoders. Furthermore, we give a formal hardness reduction, providing evidence that generic sum-rank decoding is computationally hard. As a by-product of the above, we solve some fundamental coding problems in the sum-rank metric: we give an algorithm to compute the exact size of a sphere of a given sum-rank radius, and also give an upper bound as a closed formula; and we study erasure decoding with respect to two different notions of support.

Citations (34)

Summary

We haven't generated a summary for this paper yet.