Papers
Topics
Authors
Recent
2000 character limit reached

On flag-transitive 2-(v,k,2) designs

Published 14 Jan 2020 in math.CO and math.GR | (2001.04728v1)

Abstract: This paper is devoted to the classification of flag-transitive 2-(v,k,2) designs. We show that apart from two known symmetric 2-(16,6,2) designs, every flag-transitive subgroup G of the automorphism group of a nontrivial 2-(v,k,2) design is primitive of affine or almost simple type. Moreover, we classify the 2-(v,k,2) designs admitting a flag transitive almost simple group G with socle PSL(n,q) for some n \geq 3. Alongside this analysis, we give a construction for a flag-transitive 2-(v,k-1,k-2) design from a given flag-transitive 2-(v,k,1) design which induces a 2-transitive action on a line. Taking the design of points and lines of the projective space PG(n-1,3) as input to this construction yields a G-flag-transitive 2-(v,3,2) design where G has socle PSL(n,3) and v=(3n-1)/2. Apart from these designs, our PSL-classification yields exactly one other example, namely the complement of the Fano plane.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.