Papers
Topics
Authors
Recent
2000 character limit reached

Visual Storytelling via Predicting Anchor Word Embeddings in the Stories

Published 13 Jan 2020 in cs.CV | (2001.04541v1)

Abstract: We propose a learning model for the task of visual storytelling. The main idea is to predict anchor word embeddings from the images and use the embeddings and the image features jointly to generate narrative sentences. We use the embeddings of randomly sampled nouns from the groundtruth stories as the target anchor word embeddings to learn the predictor. To narrate a sequence of images, we use the predicted anchor word embeddings and the image features as the joint input to a seq2seq model. As opposed to state-of-the-art methods, the proposed model is simple in design, easy to optimize, and attains the best results in most automatic evaluation metrics. In human evaluation, the method also outperforms competing methods.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.